Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 63(20): 11663-11690, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32959649

RESUMEN

Despite the rapidly increasing number of patients suffering from type 2 diabetes, Alzheimer's disease, and diabetes-induced dementia, there are no disease-modifying therapies that are able to prevent or block disease progress. In this work, we investigate the potential of nature-inspired glucosylpolyphenols against relevant targets, including islet amyloid polypeptide, glucosidases, and cholinesterases. Moreover, with the premise of Fyn kinase as a paradigm-shifting target in Alzheimer's drug discovery, we explore glucosylpolyphenols as blockers of Aß-induced Fyn kinase activation while looking into downstream effects leading to Tau hyperphosphorylation. Several compounds inhibit Aß-induced Fyn kinase activation and decrease pTau levels at 10 µM concentration, particularly the per-O-methylated glucosylacetophloroglucinol and the 4-glucosylcatechol dibenzoate, the latter inhibiting also butyrylcholinesterase and ß-glucosidase. Both compounds are nontoxic with ideal pharmacokinetic properties for further development. This work ultimately highlights the multitarget nature, fine structural tuning capacity, and valuable therapeutic significance of glucosylpolyphenols in the context of these metabolic and neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucósidos/síntesis química , Polifenoles/síntesis química , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colinesterasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas/métodos , Glucósidos/química , Glucósidos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Estructura Molecular , Fosforilación , Polifenoles/química , Polifenoles/farmacología
2.
J Chem Inf Model ; 58(5): 993-1004, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29624370

RESUMEN

Development of accurate force field parameters for molecular ions in the context of a polarizable energy function based on the classical Drude oscillator is a crucial step toward an accurate polarizable model for modeling and simulations of biological macromolecules. Toward this goal we have undertaken a hierarchical approach in which force field parameter optimization is initially performed for small molecules for which experimental data exists that serve as building blocks of macromolecular systems. Small molecules representative of the ionic moieties of biological macromolecules include the cationic ammonium and methyl substituted ammonium derivatives, imidazolium, guanidinium and methylguanidinium, and the anionic acetate, phenolate, and alkanethiolates. In the present work, parameters for molecular ions in the context of the Drude polarizable force field are optimized and compared to results from the nonpolarizable additive CHARMM general force field (CGenFF). Electrostatic and Lennard-Jones parameters for the model compounds are developed in the context of the polarizable SWM4-NDP water model, with emphasis on assuring that the hydration free energies are consistent with previously reported parameters for atomic ions. The final parameters are shown to be in good agreement with the selected quantum mechanical (QM) and experimental target data. Analysis of the structure of water around the ions reveals substantial differences between the Drude and additive force fields indicating the important role of polarization in dictating the molecular details of aqueous solvation. The presented parameters represent the foundation for the charged functionalities in future generations of the Drude polarizable force field for biological macromolecules as well as for drug-like molecules.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Compuestos de Amonio/química , Concentración de Iones de Hidrógeno , Conformación Molecular , Electricidad Estática , Termodinámica , Agua/química
3.
Cancer Res ; 76(12): 3593-603, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27197169

RESUMEN

In many cancers, aberrant Notch activity has been demonstrated to play a role in the initiation and maintenance of the neoplastic phenotype and in cancer stem cells, which may allude to its additional involvement in metastasis and resistance to therapy. Therefore, Notch is an exceedingly attractive therapeutic target in cancer, but the full range of potential targets within the pathway has been underexplored. To date, there are no small-molecule inhibitors that directly target the intracellular Notch pathway or the assembly of the transcriptional activation complex. Here, we describe an in vitro assay that quantitatively measures the assembly of the Notch transcriptional complex on DNA. Integrating this approach with computer-aided drug design, we explored potential ligand-binding sites and screened for compounds that could disrupt the assembly of the Notch transcriptional activation complex. We identified a small-molecule inhibitor, termed Inhibitor of Mastermind Recruitment-1 (IMR-1), that disrupted the recruitment of Mastermind-like 1 to the Notch transcriptional activation complex on chromatin, thereby attenuating Notch target gene transcription. Furthermore, IMR-1 inhibited the growth of Notch-dependent cell lines and significantly abrogated the growth of patient-derived tumor xenografts. Taken together, our findings suggest that a novel class of Notch inhibitors targeting the transcriptional activation complex may represent a new paradigm for Notch-based anticancer therapeutics, warranting further preclinical characterization. Cancer Res; 76(12); 3593-603. ©2016 AACR.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias/tratamiento farmacológico , Receptores Notch/antagonistas & inhibidores , Tiazolidinas/farmacología , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Animales , Línea Celular Tumoral , Humanos , Ratones , Somitos/embriología , Pez Cebra
4.
Methods Mol Biol ; 1215: 47-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25330958

RESUMEN

The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Ligasas de Carbono-Nitrógeno/química , Muramidasa/química , Péptidos/química , Programas Informáticos , Termodinámica
5.
J Phys Chem Lett ; 5(18): 3144-3150, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25247054

RESUMEN

In this Perspective, we summarize recent efforts to include the explicit treatment of induced electronic polarization in biomolecular force fields. Methods used to treat polarizability, including the induced dipole, fluctuating charge, and classical Drude oscillator models, are presented, including recent advances in force fields using those methods. This is followed by recent results obtained with the Drude model, including microsecond molecular dynamics (MD) simulations of multiple proteins in explicit solvent. Results show significant variability of backbone and side-chain dipole moments as a function of environment, including significant changes during individual simulations. Dipole moments of water in the vicinity of the proteins reveal small but systematic changes, with the direction of the changes dependent on the environment. Analyses of the full proteins show that the polarizable Drude model leads to larger values of the dielectric constant of the protein interior, especially in the case of hydrophobic regions. These results indicate that the inclusion of explicit electronic polarizability leads to significant differences in the physical forces affecting the structure and dynamics of proteins, which can be investigated in a computationally tractable fashion in the context of the Drude model.

6.
J Chem Phys ; 139(8): 084509, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24007020

RESUMEN

Kirkwood-Buff analysis was performed on aqueous solutions of N-methylacetamide and acetamide using the Chemistry at HARvard Molecular Mechanics additive and Drude polarizable all-atom force fields. Comparison of a range of properties with experimental results, including Kirkwood-Buff integrals, excess coordination numbers, solution densities, partial molar values, molar enthalpy of mixing, showed both models to be well behaved at higher solute concentrations with the Drude model showing systematic improvement at lower solution concentrations. However, both models showed difficulties reproducing experimental activity derivatives and the excess Gibbs energy, with the Drude model performing slightly better. At the molecular level, the improved agreement of the Drude model at low solute concentrations is due to increased structure in the solute-solute and solute-solvent interactions. The present results indicate that the explicit inclusion of electronic polarization leads to improved modeling of dilute solutions even when those properties are not included as target data during force field optimization.


Asunto(s)
Acetamidas/química , Simulación de Dinámica Molecular , Modelos Moleculares , Conformación Molecular , Soluciones , Termodinámica , Agua/química
7.
J Phys Chem B ; 117(31): 9142-60, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23841725

RESUMEN

A polarizable force field of saturated phosphatidylcholine-containing lipids based on the classical Drude oscillator model is optimized and used in molecular dynamics simulations of bilayer and monolayer membranes. The hierarchical parametrization strategy involves the optimization of parameters for small molecules representative of lipid functional groups, followed by their application in larger model compounds and full lipids. The polar headgroup is based on molecular ions tetramethyl ammonium and dimethyl phosphate, the esterified glycerol backbone is based on methyl acetate, and the aliphatic lipid hydrocarbon tails are based on linear alkanes. Parameters, optimized to best represent a collection of gas and liquid properties for these compounds, are assembled into a complete model of dipalmitoylphosphatidylcholine (DPPC) lipids that is tested against the experimental properties of bilayer and monolayer membranes. The polarizable model yields average structural properties that are in broad accord with experimental data. The area per lipid of the model is 60 Å(2), slightly smaller than the experimental value of 63 Å(2). The order parameters from nuclear magnetic resonance deuterium quadrupolar splitting measures, the electron density profile, and the monolayer dipole potential are in reasonable agreement with experimental data, and with the nonpolarizable CHARMM C36 lipid force field.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Lípidos/química , Simulación de Dinámica Molecular , Acetatos/química , Alcanos/química , Deuterio/química , Membrana Dobles de Lípidos/química , Teoría Cuántica , Electricidad Estática , Termodinámica , Agua/química
8.
Biopolymers ; 99(10): 724-38, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23703219

RESUMEN

A polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator is presented. The model is optimized with an emphasis on the transferability of the developed parameters among molecules of different sizes in this series and on the condensed-phase properties validated against experimental data. The importance of the explicit treatment of electronic polarizability in empirical force fields is demonstrated in the cases of this series of molecules with vicinal hydroxyl groups that can form cooperative intra- and intermolecular hydrogen bonds. Compared to the CHARMM additive force field, improved treatment of the electrostatic interactions avoids overestimation of the gas-phase dipole moments resulting in significant improvement in the treatment of the conformational energies and leads to the correct balance of intra- and intermolecular hydrogen bonding of glycerol as evidenced by calculated heat of vaporization being in excellent agreement with experiment. Computed condensed phase data, including crystal lattice parameters and volumes and densities of aqueous solutions are in better agreement with experimental data as compared to the corresponding additive model. Such improvements are anticipated to significantly improve the treatment of polymers in general, including biological macromolecules.


Asunto(s)
Modelos Moleculares , Conformación Molecular , Electricidad Estática , Agua/química
9.
J Med Chem ; 56(5): 2097-109, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23379514

RESUMEN

Bacteria require iron for survival and virulence and employ several mechanisms including utilization of the host heme containing proteins. The final step in releasing iron is the oxidative cleavage of heme by HemO. A recent computer aided drug design (CADD) study identified several inhibitors of the bacterial HemOs. Herein we report the near complete HN, N, CO, Cα, and Cß chemical shift assignment of the P. aeruginosa HemO in the absence and presence of inhibitors (E)-3-(4-(phenylamino)phenylcarbamoyl)acrylic acid (3) and (E)-N'-(4-(dimethylamino)benzylidene) diazenecarboximidhydrazide (5). The NMR data confirm that the inhibitors bind within the heme pocket of HemO consistent with in silico molecular dynamic simulations. Both inhibitors and the phenoxy derivative of 3 have activity against P. aeruginosa clinical isolates. Furthermore, 5 showed antimicrobial activity in the in vivo C. elegans curing assay. Thus, targeting virulence mechanisms required within the host is a viable antimicrobial strategy for the development of novel antivirulants.


Asunto(s)
Difenilamina/análogos & derivados , Inhibidores Enzimáticos/farmacología , Fumaratos/farmacología , Guanidinas/farmacología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hidrazonas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Virulencia/efectos de los fármacos , Animales , Apoenzimas/química , Caenorhabditis elegans , Difenilamina/farmacología , Hemo Oxigenasa (Desciclizante)/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad
10.
J Chem Phys ; 138(3): 034508, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23343286

RESUMEN

A polarizable water model, SWM6, was developed and optimized for liquid phase simulations under ambient conditions. Building upon the previously developed SWM4-NDP model, additional sites representing oxygen lone-pairs were introduced. The geometry of the sites is assumed to be rigid. Considering the large number of adjustable parameters, simulated annealing together with polynomial fitting was used to facilitate model optimization. The new water model was shown to yield the correct self-diffusion coefficient after taking the system size effect into account, and the dimer geometry is better reproduced than in the SWM4 models. Moreover, the experimental oxygen-oxygen radial distribution is better reproduced, indicating that the new model more accurately describes the local hydrogen bonding structure of bulk phase water. This was further validated by its ability to reproduce the experimental nuclear magnetic shielding and related chemical shift of the water hydrogen in the bulk phase, a property sensitive to the local hydrogen bonding structure. In addition, comparison of the liquid properties of the SWM6 model is made with those of a number of widely used additive and polarizable models. Overall, improved balance between the description of monomer, dimer, clustered, and bulk phase water is obtained with the new model compared to its SWM4-NDP polarizable predecessor, though application of the model requires an approximately twofold increase on computational resources.


Asunto(s)
Simulación de Dinámica Molecular , Agua/química , Enlace de Hidrógeno , Oxígeno/química
11.
J Chem Theory Comput ; 9(12): 5430-5449, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24459460

RESUMEN

Presented is a polarizable force field based on a classical Drude oscillator framework, currently implemented in the programs CHARMM and NAMD, for modeling and molecular dynamics (MD) simulation studies of peptides and proteins. Building upon parameters for model compounds representative of the functional groups in proteins, the development of the force field focused on the optimization of the parameters for the polypeptide backbone and the connectivity between the backbone and side chains. Optimization of the backbone electrostatic parameters targeted quantum mechanical conformational energies, interactions with water, molecular dipole moments and polarizabilities and experimental condensed phase data for short polypeptides such as (Ala)5. Additional optimization of the backbone φ, ψ conformational preferences included adjustments of the tabulated two-dimensional spline function through the CMAP term. Validation of the model included simulations of a collection of peptides and proteins. This 1st generation polarizable model is shown to maintain the folded state of the studied systems on the 100 ns timescale in explicit solvent MD simulations. The Drude model typically yields larger RMS differences as compared to the additive CHARMM36 force field (C36) and shows additional flexibility as compared to the additive model. Comparison with NMR chemical shift data shows a small degradation of the polarizable model with respect to the additive, though the level of agreement may be considered satisfactory, while for residues shown to have significantly underestimated S2 order parameters in the additive model, improvements are calculated with the polarizable model. Analysis of dipole moments associated with the peptide backbone and tryptophan side chains show the Drude model to have significantly larger values than those present in C36, with the dipole moments of the peptide backbone enhanced to a greater extent in sheets versus helices and the dipoles of individual moieties observed to undergo significant variations during the MD simulations. Although there are still some limitations, the presented model, termed Drude-2013, is anticipated to yield a molecular picture of peptide and protein structure and function that will be of increased physical validity and internal consistency in a computationally accessible fashion.

12.
Wiley Interdiscip Rev Comput Mol Sci ; 2(1): 167-185, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23066428

RESUMEN

Empirical force fields commonly used to describe the condensed phase properties of complex systems such as biological macromolecules are continuously being updated. Improvements in quantum mechanical (QM) methods used to generate target data, availability of new experimental target data, incorporation of new classes of compounds and new theoretical developments (eg. polarizable methods) make force-field development a dynamic domain of research. Accordingly, a number of improvements and extensions of the CHARMM force fields have occurred over the years. The objective of the present review is to provide an up-to-date overview of the CHARMM force fields. A limited presentation on the historical aspects of force fields will be given, including underlying methodologies and principles, along with a brief description of the strategies used for parameter development. This is followed by information on the CHARMM additive and polarizable force fields, including examples of recent applications of those force fields.

14.
J Chem Inf Model ; 52(6): 1559-72, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22582825

RESUMEN

Amino acid side-chain conformational properties influence the overall structural and dynamic properties of proteins and, therefore, their biological functions. In this study, quantum mechanical (QM) potential energy surfaces for the rotation of side-chain χ(1) and χ(2) torsions in dipeptides in the alphaR, beta, and alphaL backbone conformations were calculated. The QM energy surfaces provide a broad view of the intrinsic conformational properties of each amino acid side-chain. The extent to which intrinsic energetics dictates side-chain orientation was studied through comparisons of the QM energy surfaces with χ(1) and χ(2) free energy surfaces from probability distributions obtained from a survey of high resolution crystal structures. In general, the survey probability maxima are centered in minima of the QM surfaces as expected for sp(3) (or sp(2) for χ(2) of Asn, Phe, Trp, and Tyr) atom centers with strong variations between amino acids occurring in the energies of the minima indicating intrinsic differences in rotamer preferences. High correlations between the QM and survey data were found for hydrophobic side-chains except Met, suggesting minimal influence of the protein and solution environments on their conformational distributions. Conversely, low correlations for polar or charged side-chains indicate a dominant role of the environment in stabilizing conformations that are not intrinsically favored. Data also link the presence of off-rotamers in His and Trp to favorable interactions with the backbone. Results also suggest that the intrinsic energetics of the side-chains of Phe and Tyr may play important roles in protein folding and stability. Analyses on whether intrinsic side-chain energetics can influence backbone preference identified a strong correlation for residues in the alphaL backbone conformation. It is suggested that this correlation reflects the intrinsic instability of the alphaL backbone such that assumption of this backbone conformation is facilitated by intrinsically favorable side-chain conformations. Together our results offer a broad overview of the conformational properties of amino acid side-chains and the QM data may be used as target data for force field optimization.


Asunto(s)
Aminoácidos/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Proteínas/química , Teoría Cuántica
15.
J Chem Theory Comput ; 8(9): 3257-3273, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23341755

RESUMEN

While the quality of the current CHARMM22/CMAP additive force field for proteins has been demonstrated in a large number of applications, limitations in the model with respect to the equilibrium between the sampling of helical and extended conformations in folding simulations have been noted. To overcome this, as well as make other improvements in the model, we present a combination of refinements that should result in enhanced accuracy in simulations of proteins. The common (non Gly, Pro) backbone CMAP potential has been refined against experimental solution NMR data for weakly structured peptides, resulting in a rebalancing of the energies of the α-helix and extended regions of the Ramachandran map, correcting the α-helical bias of CHARMM22/CMAP. The Gly and Pro CMAPs have been refitted to more accurate quantum-mechanical energy surfaces. Side-chain torsion parameters have been optimized by fitting to backbone-dependent quantum-mechanical energy surfaces, followed by additional empirical optimization targeting NMR scalar couplings for unfolded proteins. A comprehensive validation of the revised force field was then performed against data not used to guide parametrization: (i) comparison of simulations of eight proteins in their crystal environments with crystal structures; (ii) comparison with backbone scalar couplings for weakly structured peptides; (iii) comparison with NMR residual dipolar couplings and scalar couplings for both backbone and side-chains in folded proteins; (iv) equilibrium folding of mini-proteins. The results indicate that the revised CHARMM 36 parameters represent an improved model for the modeling and simulation studies of proteins, including studies of protein folding, assembly and functionally relevant conformational changes.

16.
J Am Chem Soc ; 132(41): 14447-56, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20863122

RESUMEN

The metalloregulatory protein NikR from Helicobacter pylori (HpNikR) is a master regulator of gene expression which both activates and represses specific genes in response to nickel availability. Here, we report the first crystal structure (at 2.37 Å resolution) of Ni(II)HpNikR prepared directly from the holo protein. The protein contains four nickel ions located in two distinct coordination environments. Two nickel ions are bound to sites in a four-coordinate square-planar geometry as predicted on the basis of the structures of NikR from Escherichia coli and Pyrococcus horikoshii . The remaining two nickel ions are bound to sites with unexpected 5- or 6-coordination geometries which were previously thought to be involved in nickel incorporation into the protein. The nickel with 5-/6-coordination geometry utilizes three histidines from two separate monomeric HpNikR units along with two or three water molecules as ligands. The spatial location of the nickel in the 5-/6-coordinate site is within approximately 5 Å of the expected site if a 4-coordinate square-planar geometry occurred. Two of the histidines that participate as ligands in the 5-/6-coordinate site would also participate as ligands if the 4-coordinate site was occupied, making it impossible for both sites to be occupied simultaneously. DFT calculations show that the 5-/6-coordinate geometries are energetically favorable when the local protein environment is included in the calculations. The presence of two distinct coordination environments in HpNikR is suggested to be related to the specificity and binding affinity of this transcription factor for DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopolímeros/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Biopolímeros/química , Calorimetría , Cristalografía por Rayos X , Cartilla de ADN , Polarización de Fluorescencia , Enlace de Hidrógeno , Modelos Moleculares , Proteínas Represoras/química
17.
J Chem Theory Comput ; 6(4): 1181-1198, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20401166

RESUMEN

Lennard-Jones (LJ) parameters for a variety of model compounds have previously been optimized within the CHARMM Drude polarizable force field to reproduce accurately pure liquid phase thermodynamic properties as well as additional target data. While the polarizable force field resulting from this optimization procedure has been shown to satisfactorily reproduce a wide range of experimental reference data across numerous series of small molecules, a slight but systematic overestimate of the hydration free energies has also been noted. Here, the reproduction of experimental hydration free energies is greatly improved by the introduction of pair-specific LJ parameters between solute heavy atoms and water oxygen atoms that override the standard LJ parameters obtained from combining rules. The changes are small and a systematic protocol is developed for the optimization of pair-specific LJ parameters and applied to the development of pair-specific LJ parameters for alkanes, alcohols and ethers. The resulting parameters not only yield hydration free energies in good agreement with experimental values, but also provide a framework upon which other pair-specific LJ parameters can be added as new compounds are parametrized within the CHARMM Drude polarizable force field. Detailed analysis of the contributions to the hydration free energies reveals that the dispersion interaction is the main source of the systematic errors in the hydration free energies. This information suggests that the systematic error may result from problems with the LJ combining rules and is combined with analysis of the pair-specific LJ parameters obtained in this work to identify a preliminary improved combining rule.

18.
J Comput Chem ; 30(12): 1821-38, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19090564

RESUMEN

The polarizable empirical CHARMM force field based on the classical Drude oscillator has been extended to the nitrogen-containing heteroaromatic compounds pyridine, pyrimidine, pyrrole, imidazole, indole, and purine. Initial parameters for the six-membered rings were based on benzene with nonbond parameter optimization focused on the nitrogen atoms and adjacent carbons and attached hydrogens. In the case of five-member rings, parameters were first developed for imidazole and transferred to pyrrole. Optimization of all parameters was performed against an extensive set of quantum mechanical and experimental data. Ab initio data were used for the determination of initial electrostatic parameters, the vibrational analysis, and in the optimization of the relative magnitudes of the Lennard-Jones (LJ) parameters, through computations of the interactions of dimers of model compounds, model compound-water interactions, and interactions of rare gases with model compounds. The absolute values of the LJ parameters were determined targeting experimental heats of vaporization, molecular volumes, heats of sublimation, crystal lattice parameters, and free energies of hydration. Final scaling of the polarizabilities from the gas-phase values by 0.85 was determined by reproduction of the dielectric constants of pyridine and pyrrole. The developed parameter set was extensively validated against additional experimental data such as diffusion constants, heat capacities, and isothermal compressibilities, including data as a function of temperature.


Asunto(s)
Compuestos Heterocíclicos/química , Compuestos de Nitrógeno/química , Simulación por Computador , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Electricidad Estática , Termodinámica
19.
Theor Chem Acc ; 124(1-2): 11-28, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20577578

RESUMEN

A current emphasis in empirical force fields is on the development of potential functions that explicitly treat electronic polarizability. In the present article, the commonly used methodologies for modelling electronic polarization are presented along with an overview of selected application studies. Models presented include induced point-dipoles, classical Drude oscillators, and fluctuating charge methods. The theoretical background of each method is followed by an introduction to extended Langrangian integrators required for computationally tractable molecular dynamics simulations using polarizable force fields. The remainder of the review focuses on application studies using these methods. Emphasis is placed on water models, for which numerous examples exist, with a more thorough discussion presented on the recently published models associated with the Drude-based CHARMM and the AMOEBA force fields. The utility of polarizable models for the study of ion solvation is then presented followed by an overview of studies of small molecules (e.g. CCl(4), alkanes, etc) and macromolecule (proteins, nucleic acids and lipid bilayers) application studies. The review is written with the goal of providing a general overview of the current status of the field and to facilitate future application and developments.

20.
J Phys Chem B ; 111(11): 2873-85, 2007 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-17388420

RESUMEN

The polarizable empirical CHARMM force field based on the classical Drude oscillator has been extended to the aromatic compounds benzene and toluene. Parameters were optimized for benzene and then transferred directly to toluene, with parameters for the methyl moiety of toluene taken from the previously published work on the alkanes. Optimization of all parameters was performed against an extensive set of quantum mechanical and experimental data. Ab initio data was used for determination of the electrostatic parameters, for the vibrational analysis, and in the optimization of the relative magnitudes of the Lennard-Jones parameters. The absolute values of the Lennard-Jones parameters were determined by comparing computed and experimental heats of vaporization, molecular volumes, free energies of hydration, and dielectric constants. The newly developed parameter set was extensively tested against additional experimental data such as diffusion constants, heat capacities at constant pressure, and isothermal compressibilities including data as a function of temperature. Moreover, the structures of liquid benzene, liquid toluene, and solutions of each in water were studied. In the case of benzene, the computed and experimental total distribution function were compared, with the developed model shown to be in excellent agreement with experiment.


Asunto(s)
Benceno/química , Modelos Químicos , Tolueno/química , Dimerización , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Solubilidad , Soluciones , Electricidad Estática , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...